Structure and Transport Properties of Mixed-Matrix Membranes Based on Polyimides with ZrO2 Nanostars

نویسندگان

  • Maria P. Sokolova
  • Michael A. Smirnov
  • Pavel Geydt
  • Alexander N. Bugrov
  • Erkki Lahderanta
  • Alexander M. Toikka
  • Frank Wiesbrock
چکیده

Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO2) nanostars were synthesized. Amorphous poly(4,4′-oxydiphenylenepyromellitimide) and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxy)benzene and 4,4’-oxydiphthalic anhydride were used. The effect of ZrO2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO2 were tested for pervaporation of a mixture of butanol–water with 10 wt % H2O content. It was found that a significant amount of the ZrO2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Carbon Dioxide from Natural Gas by Matrimid-Based Mixed Matrix Membranes

Spherical MgO nanoparticles and Flake-like clay minerals modified with polyaniline (PAni) are applied in Matrimid in order to fabricate mixed matrix membranes (MMMs) having improved gas separation performance. The CO2 permeability, CO2/CH4 selectivity and CO2-induced plasticization pressure of MMMs are assessed at 4-30 bar feed pressure. The chemical structure, morphology and thermal properties...

متن کامل

Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide

In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...

متن کامل

Electrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization

In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...

متن کامل

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane

In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016